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Does cannabis use have substantial and permanent effects on
neuropsychological functioning? Renewed and intense attention
to the issue has followed recent research on the Dunedin cohort,
which found a positive association between, on the one hand,
adolescent-onset cannabis use and dependence and, on the other
hand, a decline in IQ from childhood to adulthood [Meier et al.
(2012) Proc Natl Acad Sci USA 109(40):E2657–E2664]. The associa-
tion is given a causal interpretation by the authors, but existing
research suggests an alternative confounding model based on
time-varying effects of socioeconomic status on IQ. A simulation
of the confounding model reproduces the reported associations
from the Dunedin cohort, suggesting that the causal effects esti-
mated in Meier et al. are likely to be overestimates, and that the
true effect could be zero. Further analyses of the Dunedin cohort
are proposed to distinguish between the competing interpreta-
tions. Although it would be too strong to say that the results have
been discredited, the methodology is flawed and the causal infer-
ence drawn from the results premature.
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To what extent does cannabis use have permanent and sub-
stantial effects on neuropsychological functioning? The ques-

tion has received renewed and worldwide attention with the
recent evidence of correlations between, on the one hand, per-
sistent cannabis use initiated in adolescence and, on the other
hand, a decline in IQ-scores between the ages of 13 and 38 (1).
Although Meier et al. (1) note the possibility of remaining
confounders, they conclude that the findings are suggestive of a
neurotoxic effect of cannabis on developing brains that perma-
nently lowers IQ. This conclusion seems premature in light of
likely confounding from socioeconomic status (SES). After
a brief description and discussion of the Meier et al. study design,
I present evidence regarding the relationship between IQ tra-
jectories and SES. Simulation results indicate that SES-corre-
lated cognitive decline is sufficient to reproduce the Meier et al.
results. I conclude by sketching empirical analyses that can dis-
tinguish between the causal and confounding model.

Meier et al., 2012: Study Design and Methodological Issues
The Meier et al. (1) study uses data from the high-quality Dun-
edin cohort, a “prospective study of a birth cohort of 1,037
individuals followed from birth (1972/1973) to age 38 y.” As part
of this study, participants were scored for use of—and de-
pendence on—cannabis at ages 18, 21, 26, 32, and 38. Using these
data, Meier et al. sort participants into cannabis-exposure groups:
nonusers, users who never scored as dependent, and users who
scored as dependent once, twice, or three or more times. Con-
trolling for sex, ordinary least-squares regressions find IQ-declines
increasing linearly with cannabis exposure (a dose–response re-
lationship). The correlations persist within a number of subsets
cleared of various possible confounders (e.g., subsamples with no
alcohol dependence or no schizophrenia), and are driven by
adolescent-onset users.

The causal interpretation of these results rests on the as-
sumption that IQ-trajectories would have been equal across the
different cannabis-exposure groups in the absence of cannabis
use. The risk of selection bias is reduced through the use of a
difference-in-difference estimator: because the outcome measure
is IQ-change, the results will only be biased if omitted variables
both correlate with adolescent-onset cannabis use and have a time-
varying effect on IQ. Variables with potential relevance for IQ can
be omitted provided their effects are both exhausted before age 13
and permanent, or provided exposure is always equal in childhood
and adulthood. Although a number of confounders could con-
ceivably remain, a natural and plausible candidate is SES.

Who Are the Adolescent-Onset Cannabis Users?
Although Meier et al. (1) do not present a table of background
variables and average scores by cannabis-use groups, the exten-
sive publications on the Dunedin cohort indicate that early-onset
cannabis use is more common for those with poor self-control,
prior conduct problems, and high scores on risk factors corre-
lated with a low family SES (2, 3). Based on results from a similar
cohort, a likely consequence of this is that Maori participants will
be overrepresented (4).
In addition to predicting use, low-SES characteristics would

also seem to predict dependence conditional on use for the
Dunedin cohort (3, 5). Although the effect size in the Dunedin
cohort is unknown, this effect can be sizeable, with young, low-
SES cannabis users having an odds-ratio of 21.9 for transitioning
into dependence in a German longitudinal study (6).

What Are Counterfactual IQ-Trajectories for Those at Risk
for High Cannabis Exposure?
Predictions regarding the relationship between SES and IQ
change can be derived from the recent Flynn–Dickens model of
IQ (7–9). The model emphasizes a two-way causality between IQ
and environment: A cognitively challenging environment raises
an individual’s IQ, and a higher individual IQ makes it more
likely that an individual will self-select or be sorted into more
cognitively challenging environments. This self-selection/sorting
will also be affected by factors other than IQ that, following
Heckman (10), I will refer to as “noncognitive factors.” These
factors are associated with future environments, and the future
environment in turn affects future IQ. Over time, children with
similar IQs but differing SES self-select or are sorted into envi-
ronments with different cognitive demands. These differences in
cognitive demands in turn, cause their IQs to diverge, generating
SES-related differences in individual IQ trajectories. Similar
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reasoning holds for minorities, who may face cultural challenges,
discrimination, and other issues raising the risk of poor outcomes.
This account rests on two assumptions. The first assumption is

that noncognitive factors related to SES influence the future
environment of an individual (education, occupation, and so
forth). At a general level, this is known to be the case in that SES
predicts educational attainment after controlling for individual
IQ (11). Although IQ gains from early intervention programs
tend to fade in the years following an intervention (11), the
programs can nevertheless show large effects on long-term ed-
ucational and occupational outcomes (10, 12). These effects
consequently work through noncognitive factors, “hypothesized
to be related to differences in motivation, perseverance, tem-
perament, and other dimensions of social competence” (12). In
a study on the Dunedin cohort, a measure of self-control closely
related to these traits was positively correlated with childhood
SES (5), and predicted both negative adolescent outcomes (e.g.,
school dropout, pregnancy) and adult outcomes (e.g., criminal
convictions, health, wealth, and own SES).
The second assumption required is that these differences in

future environments, caused by variation in noncognitive factors,
in turn affect individual IQ. This influence seems to be the case
for environments relevant at all stages of an individual´s life:
adoption studies indicate that SES-related differences in a child’s
home environments causally affect IQs (13). Early-intervention
studies can show substantial short-term effects on IQ (11, 12).
Education has a substantial, positive causal effect on IQ (14–16).
Employment supports cognitive skills in the elderly (17, 18).
Although cognitive demands influence IQs across the board,

the heritability of childhood IQ varies from less than 0.2 for low-
SES children to more than 0.7 for high-SES children (19). This
finding means that environmental variation explains a larger
share of childhood IQ variation in low-SES groups, suggesting
that high-SES environments are sufficiently good that variation
between them matters little for IQ (20). This finding would have
three consequences in our context. First, schools will raise low-
SES IQs more than high-SES IQs: the increase in cognitive
demands facing a child entering school will be larger for low-SES
children, whose home environment is less cognitively demanding.
This difference is further amplified because, as noted, the
baseline environment of low-SES children will be within a range
where changes in environment have a large cognitive impact.
Second, these gains will decline over time as children age and
increasingly self-select environments and experiences in line with
their genetic propensities and early-childhood influences. This
reduction in forced environments raises the importance of the
noncognitive factors, which correlate with SES, and which on
average shift low-SES individuals toward environments and
careers with lower cognitive demands. Third, heritable non-
cognitive factors will have little impact on the IQ of high-SES
individuals, because these will tend to alter their environment
within the range where environment has small IQ effects. As
a consequence, the well-established increase in heritability of IQ
with age (21, 22) will be driven by an even stronger increase in
heritability of IQ within low-SES groups. This result would be
consistent with the heritability measures for high-SES individuals
being high already in childhood and adolescence (19, 23).
It is worth noting that the relationship between SES and IQ

change is supported empirically and has validity independently of
the Flynn–Dickens theory that led us to it. Empirical research on
how IQ trajectories differ with individual characteristics indi-
cates that age-related cognitive decline is higher for some mi-
norities, those with low education, and those in jail (24,25). Such
differences in trends cause substantial differences over time: IQ
scores of black children in the United States fall 10 IQ points,
equivalent to 0.67 of a SD, relative to white children between
early childhood and young adulthood (26).

Indications of SES Confounding in the Meier et al. Study
A subanalysis of participants with high school or less in the Meier
et al. (1) report provides indicative support of such confounding.
Measures of SES typically use a combination of income, edu-
cation, and occupation. Using own education as a noisy proxy for
childhood SES, we can take the reported estimates from Meier
et al. for those with high school education or less and calculate
the (nonreported) effects on those with more than high school.
Relative to nonusers in their own educational category, the IQ-
loss of the most cannabis-exposed group (dependent 3+ times) is
0.45 SD units (n = 26) for those with high school education or
less. The comparable effect for those with higher education is
roughly half, at 0.24 SD units (n = 12). Similarly, the second-
most cannabis-exposed group saw an IQ-drop of 0.22 SD units
(n = 20) for the low-education subgroup, but only 0.14 SD units
(n = 35) in the high-education subgroup. Two caveats should be
noted: First, these estimates are based on small numbers. Sec-
ond, as noted by the researchers, reduced schooling could be
part of the causal path by which cannabis use lowers IQ.
Further strengthening the case for the confounding interpre-

tation of the Meier et al. (1) results are prior studies on the same
topic. A Canadian study of cannabis exposure on IQ change from
ages 9–12 to ages 17–20 drew participants from a less socioeco-
nomically diverse population (“largely middle-class families”)
(27). This study group implies less scope for SES-confounding,
and, in line with this, the study reported no permanent effects of
cannabis on IQ. A study of cognitive changes for a group of 1,318
participants over the course of a decade found no effects of
cannabis use on cognitive decline (28). Cannabis users (light and
heavy) “evidenced less cognitive decline than nonusers” (P < 0.1)
in a univariate analysis, although the relationship disappeared
after controlling for education, age, minority status, and other
confounders. A third study included substance abuse in a multi-
variate analysis of the risk of experiencing cognitive decline over
a 1-y period (25). For those below 65 in age, the authors found
beneficial effects of education and negative effects of minority
status and jail residence (all statistically significant), but no effects
of substance use (lifetime status). Again, some caveats are in
order: Meier et al. suggest that the IQ effects are seen for the
subset of users who began using in adolescence and also persisted
with high levels of cannabis use over several years. The study
period and the intensity of use may be too low in the Canadian
sample for this effect to be discernible, and the other studies did
not estimate models that would allow the effect of cannabis use
on IQ to differ with age of first use.

Comparing and Contrasting the Causal and Confounding
Model
The correlational patterns produced by the SES confounder were
examined using a simulation model that contained no causal effect
of cannabis on adult IQ. Instead, the simulation model assumes
that: (i) SES predicts cannabis exposure, and (ii) low-SES groups
receive a temporary IQ boost from compulsory schooling that
averages 4 IQ points or ∼0.25 SD units. This boost is undone over
time as individuals age out of forced environments and the envi-
ronment-shaping influence of noncognitive factors increases. The
simulation model establishes that the confounder was sufficient to
reproduce the effects found in the Meier et al. (1) study: Fig. 1
shows the mean and 95% confidence intervals of the effects pro-
duced by the simulation model (based on 500 runs, each with n =
875), with the actual estimates from Meier et al. (n = 894) plotted
in. The stochastic variation implied by the simulation model places
the actual Meier et al. results well within the feasible set of results.
Although the large uncertainty bands (caused in part by the small
number of participants in high-exposure groups) would seem to
imply that the effects are not statistically significant, this is not the
case: Meier et al. report only t test and associated P values from an
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ordinary least-squares regression with a linear trend. In the sim-
ulation model, this test is significant at the 10% level in ∼60% of
simulations, at the 5% level in ∼50% of the simulations, and at the
1% level in ∼30%.
Although the Flynn–Dickens model suggests a number of in-

teresting hypotheses regarding SES and IQ change that could be
explored within the rich Dunedin cohort data, I will restrict
myself to noting some analyses that could help distinguish be-
tween the causal and confounding model.

Descriptive Statistics for Background Traits and Early Environment by
Adolescent-Onset Cannabis-Exposure Group. Such a table would
highlight possible confounders, by indicating the extent to which
SES and SES-related noncognitive traits have determined place-
ment in different cannabis-exposure groups. If this sorting is very
weak, the case for confounding interpretation is weakened.

Confounders. The reported estimates in Meier et al. (1) only
controlled for sex in their analyses, examining potential con-
founders individually in separate subanalyses. The risk with this
approach is that it overestimates the effect of cannabis use if
cannabis use is correlated with a number of confounders that
have small individual, but large collective, impact. For example,
the researchers could run a regression of adult IQ on childhood
IQ, cannabis exposure, childhood traits and environmental char-
acteristics, educational level, occupational status (as a proxy for
a job’s cognitive demands), and employment history.

MarkedDifferencesBetweenAdolescent-Onset andAdult-OnsetCannabis
Users.The permanent IQ-declines in Meier et al. (1) were observed
almost exclusively in adolescent-onset users. The confounding
model would then predict that adult-onset users on average had
higher family SES and exhibited fewer risk factors predicting low
education, conduct problems, and unemployment.

Alternative Methods for Correcting for Selection Bias. The con-
founding model implies that adolescent-onset users are a group
that (independently of cannabis use) would tend to self-select or
be sorted away from cognitively demanding environments, and
consequently experience IQ-declines after childhood. A number
of methods exist to deal with selection bias in observational data,
and there are specification tests available that help assess their
appropriateness (29). We know that participant IQ in the
Dunedin cohort was measured at ages 7, 9, and 11 (5). The
assumption used in Meier et al. (1) of time-invariant individual
heterogeneity can be tested using these multiple preexposure
measurements of IQ: Did the different exposure groups have
identical IQ trajectories before their cannabis use? Alternatively,
if sorting into cannabis-exposure groups correlates with pre-
exposure IQ-trajectories, a random-growth estimator would use
this additional data on preexposure IQs to extrapolate linear
individual IQ trends and identify the causal effects of cannabis.

Consistency with IQ Heritability Results. The increasing heritability
of IQ with age (particularly in low-SES groups) implies that the
change in IQ from childhood to adulthood is determined more
by heritable than by environmental factors. This implication
places some constraints on the plausible size of environmental
effects, such as cannabis. What is the share of variation in adult
IQ explained by cannabis use in the Dunedin cohort, and how
does this compare with the share of variation in adult IQ that we
should expect to be explained by environmental factors based on
established studies on IQ?

Conclusion
Meier et al.’s (1) estimated effect of adolescent-onset cannabis
use on IQ is likely biased, and the true effect could be zero. It
would be too strong to say that the results have been discredited,
but fair to say that the methodology is flawed and the causal in-
ference drawn from the results premature. Furthermore, should a
direct effect of adolescent-onset cannabis use remain after con-
trolling for confounders, the Flynn–Dickens model suggests an
alternative causal path through which this may occur. This model,
too, would predict reduced IQ in so far as heavy, persistent, ad-
olescent-onset cannabis use involves a culture and norms that raise
the risk of dropping out of school, getting entangled with crime,
and other such behaviors. Unlike a neurotoxic effect, however, this
effect would be nonpermanent and mediated by the cognitive
demands of different environments. Because the effect in this case
would be a result of culture rather than pharmacology, it would
also have different policy implications.

Methods
Based on the confounding interpretation of the Meier et al. (1) estimates,
a simulation model was built using Mathematica (v6) to generate simulated
data samples of similar size. The model has three SES levels, draws adult and
childhood IQs that differ by SES, assumes that lower-SES individuals have
higher risk for cannabis exposure than high-SES individuals at all levels, and
that the sorting intensifies with exposure level. Details and robustness
checks are available in SI Methods.
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